Froehlich Environmental PLLC 8/24/2020

CANOA HILLS GOLF COURSE

Canoa Hills Golf Course Club House Determination of the Basement's ambient concentrations of Volatile Organic Compounds

Results Summary

There are 75 volatile organic compounds (VOCs) analyzed for and their concentrations determined by CAS Labs Arizona certification for the TO-15 method (Appendix A). The analysis for the sample collected from the ambient air in the Canoa Hills Golf Course Clubhouse basement reports non-detectable concentrations for 66 of the listed VOCs. For the 9 VOCs with concentrations above the (minimum) method reporting limit, MRL (Table 1), the sum of these VOC concentrations (0.25 ppmv) are less than the median concentration of total VOCs reported ¹ for ambient (outdoor) air (0.3 ppmv). The ratio for each measured VOC concentration compared to OSHA's Permissible Exposure Limit ² indicate a range of "safety factors " from 23,000 to 120,000.

TABLE 1 – Basement Air Volatile Organic Compound Concentrations

6	Result	MRL	PEL 8-Hr	
Compound	[ppbv]	[ppbv]	TWA [ppmv]*	PEL/Result
Propene	4.3	3.1	500*	1.2E+05
Ethanol	43	28	1000	2.3E+04
Acetone	32	22	1000	3.1E+04
2-Butanone (MEK)	4.8	3.7	200	4.2E+04
n-Hexane	9.3	1.5	500	5.4E+04
Toluene	6.6	1.4	200	3.0E+04
Styrene	3.7	1.2	100	2.7E+04
alpha-Pinene	2.5	0.97	None Listed	NA
d-Limonene	1.2	0.97	None Listed	NA

Project Background

On August 18th, Melanie Stephenson, Project Manager with Green Valley Recreation, requested that sample of the indoor air from the basement of the Canoa Hills Golf Course Clubhouse be collected and analyzed for volatile organic compounds to address an expressed concern. The Clubhouse is located at 1401 West Camino Urbano, in Green Valley. The Clubhouse (Photo #1) is in a suburban setting near a lightly trafficked boulevard, overlooking a golf course, and is approximately 2500 ft from I-19, the primary route for commerce in Arizona between the US and Mexico in Arizona.

Photo 1: Location

Sampling Summary

At 2:00 PM, on August 19th, Dennis Froehlich (Froehlich Environmental PLLC) initiated sample collection from the basement air at an ambient temperature of 93 F, without ventilation (building is has been out of service for an extended period), and without sensible smells or odors (Photo 2).

Photo 2: Basement

Page 3

A bottle of ZEP Express WAX was on a wall box in the southeast corner of the basement (Photo 2). Per the manufacturer's product literature³ and excerpts from the product Safety Data Sheet⁴, this bottle is a VOC permeation source of the product through the plastic bottle and considered a contributing source of the trace VOC measured.

Photo 3: ZEP Express Wax

The basement air sample was collected into a new 1-liter Tedlar sample bag employing a vacuum bag sampler per the standard sampling procedure, and then sent via FedEx overnight to Columbia Analytical in Simi Valley California (Photo 4).

Analysis Results & Interpretation

Of the nine VOC compounds listed in Table 1:

- 1) two VOCs, alpha-Pinene and d-Limonene, do not have permissible exposure limits as they are used in foods, scents, and perfumes (and car wax).
- 2) the magnitude of the reported concentration in excess of the method reporting limit (MRL) is less than 80% of the MRL, i.e. less than the first unit of precision (MRL zero).
- 3) the reported concentration value is less than the sum the MRL, sampling error, and outside air concentration

 and therefore at such low concentrations, represent a compound's presence rather than precise
 concentration.
- 4) contributing sources of the measurable VOCs in the basement air, may include diffusion from the basement surfaces, VOCs permeated (diffused) through the plastic ZEP EXPRESS WAX bottle, and the background contribution from outside air.

The lab Analytical Report is attached as Appendix A.

The ZEP Express Wax manufacturer's information is attached as Appendix B.

Footnotes:

1 - "Total Volatile Organic Concentrations in 2700 Personal, Indoor, and Outdoor Air Samples Collected in the US EPA Team Studies", L. Wallace, E. Pellizzari and C. Wendel, Indoor Air, 4, 1991

2 - Occupational Safety and Health Administration's Standard 1910 (Tables Z-1 and Z-2) established OSHA Permissible Exposure Limit (PEL) expressed as 8-hour Time Weighted Average concentration in parts per million by volume [ppmv].

3 – "STORAGE: Store in a cool area away from direct sunlight and protect from freezing. Keep container tightly closed at all times when not in use to decrease evaporation of volatile solvents", ZEP Product Specification Report, Product# 825-300, Express Wax

4 – " SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

SUBSTANCE / MIXTURE: MIXTURE									
HAZARDOUS COMPONENTS:									
CHEMICAL NAME CAS-NO. CONCENTRATION [
SOLVENT NAPHTHA (PETROLEUM),	LIGHT 64	742-89-8	>=5 - <10						
ALIPH.									

ALKANES, C9-11-ISO- 68551-16-6 >=1 - <5 THE EXACT PERCENTAGES OF DISCLOSED SUBSTANCES ARE WITHHELD AS TRADE SECRETS" ZEP Express Wax Safety Data Sheet, 9/8/2017

Appendix A CASLabs Report

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

LABORATORY REPORT

August 24, 2020

Dennis Froehlich Froehlich Environmental PLLC 2835 E Cerrada Los Palitos Tucson, AZ 85718

RE: Canoa Hills Golfcourse Clubhouse Basement

Dear Dennis:

Enclosed are the results of the sample submitted to our laboratory on August 20, 2020. For your reference, this analysis has been assigned our service request number P2004633.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

on at 3:24 nm ue Ande Aug 24, 2020

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

Client: Froehlich Environmental PLLC Project: Canoa Hills Golfcourse Clubhouse Basement Service Request No: P2004633 Arizona License No: AZ0694

CASE NARRATIVE

The sample was received intact under chain of custody on August 20, 2020 and was stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample at the time of sample receipt. The laboratory is Arizona certified for EPA Methods TO-15.

Volatile Organic Compound Analysis

The sample was analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph/mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. According to the method, the use of Tedlar bags is considered a method modification. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The minimum criterion for propene was not met in the Continuing Calibration Verification (CCV) analyzed on August 20, 2020. In accordance with ALS Environmental standard operating procedures, a Method Reporting Limit (MRL) check standard containing the analyte of concern was analyzed each day of analysis. The MRL check standard verified that instrument sensitivity was adequate to detect the analyte at the MRL on the day of analysis. No further corrective action was necessary.

The upper control criteria were exceeded for bromoform, 1,2-dibromo-3-chloropropane, and 1,2,4trichlorobenzene in the Laboratory Control Sample (LCS) analyzed on August 20, 2020. The analytes in question were not detected in the associated field samples. Since the error associated with the elevated recovery equates to a high bias, the sample data has not been significantly affected. The data has been flagged accordingly. No corrective action was required.

The upper surrogate control criterion was exceeded due to matrix interference. The presence of nontarget background components prevented adequate resolution of the surrogate; therefor, accurate quantitation was not possible. The target analytes and surrogate recoveries for the associated QC were acceptable. The associated data has been flagged with the appropriate data qualifiers. No further corrective action was appropriate.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	http://dec.alaska.gov/eh/lab.aspx	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	http://www.deq.louisiana.gov/page/la-lab-accreditation	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtml	2018027
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	1776326
New Jersey DEP (NELAP)	http://www.nj.gov/dep/enforcement/oqa.html	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-007
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 19-10
Utah DOH (NELAP)	http://health.utah.gov/lab/lab_cert_env	CA01627201 9-10
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client:	Froehlich Envir	onmental	PLLC		Service Request: P2004633
Project ID:	Canoa Hills Go	lfcourse C	Clubhouse Ba	asement	
Date Received:	8/20/2020				C Bags
Time Received:	10:00				5 Modified - VO
			Date	Time	
Client Sample ID	Lab Code	Matrix	Collected	Collected	
Canoa Hills Clubhouse Basement	P2004633-001	Air	8/19/2020	14:05	Х

Air - Chain of Custody Record & Analytical Service Request

Page 1 of 1

				Requested .	Turnaround Time in E	Rueineee Davs (Sur	rhamae) nias	an ninala			41-
Fax (805) 526-7270				1 Day (100%) 2 Day (6%) 3 Day	(50%) 4 Day (35%)	5 Day (25%)	10 Day-Stan	darđ	1 town	004633
								CAS Contac			
Company Name & Address (Reporting In	Iformation)			Project Name					i		
FTOEDLICD ENVIRONME	ntal PLL	Ų		Canoa Hill	s Golfcourse Clubh	ouse Basement		Analysi	is Method/	Analytes	
2835 E Cerrada Los 1 Tucson AZ 85718	Palitos			Project Numbe	'n	ī					
Project Manager Dennis Froehlich				P.O. # / Billin	ig Information						
Phone 520-240-8152	Fax									-	Comments e.g. Actual Preservative or
Email Address for Result Reporting dafroehlich@gmail.com				Sampler (Print Dennis Fro	& Sign) Sehlich /						specific instructions
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Sample Type (Air/Tube/ Solid)	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller (Bar code - FC #)	Sample Volume				
Canoa Hills Clubhouse Basement		8/19/20	2:05046	Air	Tedlar #01		1 liter	TO-15			2-day expedited
			-								
5.0											
									:		
Tier I - (Results/Default if not specified) X		Tier III (Data Va	ılidation Packagı	e) 10% Surchary	90		EDD required	Yes / No			Drofant Dominiania
Tier II (Results + QC)	q	Tier V (client sp	ecified)	.] ;			Type:		EDD Units:		(MRLs, QAPP)
Reliquished by: (Signature)	Had	Je.	Date: 8/19/20	7ime: 3:40%	Received by (Bigmature)	A)		Straine	Time:	
Reliquished by: (Signature)			Date:	Time:	Received by: (Signature)				Date:	Time:	
Reliquished by: (Signature)			Date:	Time:	Received by: (Signature)				Date:	Time:	Cooter / Blank Temperature °C

ALS Environmental Sample Acceptance Check Form

Client:	Froehlich Env	ironmental PLLC	~F	·····		Work order:	P2004633			
Project:	Canoa Hills G	olfcourse Clubhouse I	Basement							
Sample((s) received on:	8/20/20		I	Date opened:	8/20/20	by:	DENIS	E.POS	ADA
<u>Note:</u> This	form is used for <u>all</u>	samples received by ALS.	The use of this f	orm for custody se	als is strictly me	eant to indicate preser	nce/absence and n	ot as an in	dication	of
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at t	he request of the	e client and/or as requ	aired by the metho	od/SOP.	No	N/A
1	Were sample	containers properly n	narked with cli	ient sample ID'	?			\mathbf{X}		
2	Did sample co	ontainers arrive in goo	od condition?					\mathbf{X}		
3	Were chain-of	f-custody papers used	and filled out	?				X		
4	Did sample co	ontainer labels and/or	tags agree wi	th custody pape	ers?			X		
5	Was sample volume received adequate for analysis?						X			
6	Are samples within specified holding times?						X			
7	Was proper temperature (thermal preservation) of cooler at receipt adhered to?									X
8	Were custody	seals on outside of co	oler/Box/Con	tainer?					X	
		Location of seal(s)?					Sealing Lid?			\mathbf{X}
	Were signature	e and date included?								X
	Were seals int	act?								X
9	Do containe	rs have appropriate p	eservation, a	ccording to me	thod/SOP or	Client specified	nformation?			X
	Is there a clier	nt indication that the s	ubmitted samp	ples are pH pre	served?					X
	Were VOA v	ials checked for prese	nce/absence of	f air bubbles?						\mathbf{X}
	Does the clien	t/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alter	· it?			X
10	Tubes:	Are the tubes capp	ed and intact?	?						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed bad	ges separated a	and individually	y capped and	intact?				X
	Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Recei	pt / Pres Commer	ervation nts	L
ir200463.	3-001.01	1 L Zeton Bag					1			

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Froehlich Environmental PLLC		
Client Sample ID:	Canoa Hills Clubhouse Basement	ALS Project ID: P20046	533
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P2004	533-001
Test Code:	EPA TO-15 Modified	Date Collected: 8/19/20)
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 8/20/20)
Analyst:	Topacio De Leon	Date Analyzed: 8/21/20)
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 0.	10 Liter(s)
Test Notes:			

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	7.5	5.3	4.3	3.1	V9
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	5.3	ND	1.1	
74-87-3	Chloromethane	ND	5.3	ND	2.6	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	5.3	ND	0.76	
75-01-4	Vinyl Chloride	ND	5.4	ND	2.1	
106-99-0	1,3-Butadiene	ND	5.3	ND	2.4	
74-83-9	Bromomethane	ND	5.4	ND	1.4	
75-00-3	Chloroethane	ND	5.4	ND	2.0	
64-17-5	Ethanol	80	52	43	28	
75-05-8	Acetonitrile	ND	5.3	ND	3.2	
107-02-8	Acrolein	ND	10	ND	4.4	
67-64-1	Acetone	75	53	32	22	
75-69-4	Trichlorofluoromethane (CFC 11)	ND	5.3	ND	0.94	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	21	ND	8.5	
107-13-1	Acrylonitrile	ND	5.3	ND	2.4	
75-35-4	1,1-Dichloroethene	ND	5.4	ND	1.4	
75-09-2	Methylene Chloride	ND	5.3	ND	1.5	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	5.4	ND	1.7	
76-13-1	Trichlorotrifluoroethane (CFC 113)	ND	5.4	ND	0.70	
75-15-0	Carbon Disulfide	ND	11	ND	3.5	
156-60-5	trans-1,2-Dichloroethene	ND	5.4	ND	1.4	
75-34-3	1,1-Dichloroethane	ND	5.5	ND	1.4	
1634-04-4	Methyl tert-Butyl Ether	ND	5.4	ND	1.5	
108-05-4	Vinyl Acetate	ND	54	ND	15	
78-93-3	2-Butanone (MEK)	14	11	4.8	3.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. V9 = CCV recovery was below method acceptance limits.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Froehlich Environmental PLLC		
Client Sample ID:	Canoa Hills Clubhouse Basement	ALS Project ID: P2004633	
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P2004633-	001
Test Code:	EPA TO-15 Modified	Date Collected: 8/19/20	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 8/20/20	
Analyst:	Topacio De Leon	Date Analyzed: 8/21/20	
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 0.10 l	Liter(s)
Test Notes:			

CAS #	Compound	Result	MRL	Result	MRL	Data
156 50 2	1. 1.2 D' 11	μg/m ³	<u>μg/m³</u>		<u>ppbv</u>	Quaimer
156-59-2	cis-1,2-Dichloroethene	ND	5.3	ND	1.3	
141-78-6	Ethyl Acetate	ND	11	ND	3.1	
110-54-3	n-Hexane	33	5.4	9.3	1.5	
67-66-3	Chloroform	ND	5.4	ND	1.1	
109-99-9	Tetrahydrofuran (THF)	ND	5.5	ND	1.9	
107-06-2	1,2-Dichloroethane	ND	5.4	ND	1.3	
71-55-6	1,1,1-Trichloroethane	ND	5.4	ND	0.99	
71-43-2	Benzene	ND	5.3	ND	1.7	
56-23-5	Carbon Tetrachloride	ND	5.3	ND	0.84	
110-82-7	Cyclohexane	ND	11	ND	3.2	
78-87-5	1,2-Dichloropropane	ND	5.4	ND	1.2	
75-27-4	Bromodichloromethane	ND	5.4	ND	0.81	
79-01-6	Trichloroethene	ND	5.4	ND	1.0	
123-91-1	1,4-Dioxane	ND	5.4	ND	1.5	
80-62-6	Methyl Methacrylate	ND	11	ND	2.7	
142-82-5	n-Heptane	ND	5.4	ND	1.3	
10061-01-5	cis-1,3-Dichloropropene	ND	5.2	ND	1.1	
108-10-1	4-Methyl-2-pentanone	ND	5.3	ND	1.3	T2, T6
10061-02-6	trans-1,3-Dichloropropene	ND	5.3	ND	1.2	
79-00-5	1,1,2-Trichloroethane	ND	5.4	ND	0.99	
108-88-3	Toluene	25	5.4	6.6	1.4	
591-78-6	2-Hexanone	ND	5.4	ND	1.3	T2, T6
124-48-1	Dibromochloromethane	ND	5.4	ND	0.63	
106-93-4	1,2-Dibromoethane	ND	5.4	ND	0.70	
123-86-4	n-Butyl Acetate	ND	5.5	ND	1.2	T2, T6

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

T2 = Cited ADHS licensed method does not contain this analyte as part of method compound list.

T6 = The reported result cannot be used for compliance purposes.

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Froehlich Environmental PLLC	
Client Sample ID:	Canoa Hills Clubhouse Basement	ALS Project ID: P2004633
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P2004633-001
Test Code [.]	FPA TO-15 Modified	Date Collected: 8/19/20
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 8/20/20
Analyst:	Topacio De Leon	Date Analyzed: 8/21/20
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 0.10 Liter(s)
Test Notes:		

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	5.4	ND	1.2	
127-18-4	Tetrachloroethene	ND	5.2	ND	0.77	
108-90-7	Chlorobenzene	ND	5.4	ND	1.2	
100-41-4	Ethylbenzene	ND	5.4	ND	1.2	
179601-23-1	m,p-Xylenes	ND	11	ND	2.5	
75-25-2	Bromoform	ND	5.4	ND	0.52	L3
100-42-5	Styrene	16	5.3	3.7	1.2	
95-47-6	o-Xylene	ND	5.4	ND	1.2	
111-84-2	n-Nonane	ND	5.4	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	ND	0.79	
98-82-8	Cumene	ND	5.4	ND	1.1	
80-56-8	alpha-Pinene	14	5.4	2.5	0.97	T2, T6
103-65-1	n-Propylbenzene	ND	5.4	ND	1.1	
622-96-8	4-Ethyltoluene	ND	5.4	ND	1.1	
108-67-8	1,3,5-Trimethylbenzene	ND	5.3	ND	1.1	
95-63-6	1,2,4-Trimethylbenzene	ND	5.4	ND	1.1	
100-44-7	Benzyl Chloride	ND	11	ND	2.1	
541-73-1	1,3-Dichlorobenzene	ND	5.4	ND	0.90	
106-46-7	1,4-Dichlorobenzene	ND	5.4	ND	0.90	
95-50-1	1,2-Dichlorobenzene	ND	5.4	ND	0.90	
5989-27-5	d-Limonene	6.4	5.4	1.2	0.97	T2, T6
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.3	ND	0.55	L3
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	ND	0.73	L3
91-20-3	Naphthalene	ND	5.2	ND	0.99	
87-68-3	Hexachlorobutadiene	ND	5.3	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

T2 = Cited ADHS licensed method does not contain this analyte as part of method compound list.

T6 = The reported result cannot be used for compliance purposes.

L3 = The associated blank spike recovery was above method acceptance limits.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Froehlich Environmental PLLC		
Client Sample ID:	Method Blank	ALS Project ID: P2004633	
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P200820-MB	
Test Code:	EPA TO-15 Modified	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA	
Analyst:	Simon Cao	Date Analyzed: 8/20/20	
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:			

CAS #	Compound	Result	MRL	Result	MRL	Data
		µg/m³	µg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.53	ND	0.31	V9
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.53	ND	0.11	
74-87-3	Chloromethane	ND	0.53	ND	0.26	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CEC 114)	ND	0.53	ND	0.076	
75-01-4	Vinyl Chloride	ND	0.54	ND	0.21	
106-99-0	1,3-Butadiene	ND	0.53	ND	0.24	
74-83-9	Bromomethane	ND	0.54	ND	0.14	
75-00-3	Chloroethane	ND	0.54	ND	0.20	
64-17-5	Ethanol	ND	5.2	ND	2.8	
75-05-8	Acetonitrile	ND	0.53	ND	0.32	
107-02-8	Acrolein	ND	1.0	ND	0.44	
67-64-1	Acetone	ND	5.3	ND	2.2	
75-69-4	Trichlorofluoromethane (CFC 11)	ND	0.53	ND	0.094	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	2.1	ND	0.85	
107-13-1	Acrylonitrile	ND	0.53	ND	0.24	
75-35-4	1,1-Dichloroethene	ND	0.54	ND	0.14	
75-09-2	Methylene Chloride	ND	0.53	ND	0.15	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.54	ND	0.17	
76-13-1	Trichlorotrifluoroethane (CFC 113)	ND	0.54	ND	0.070	
75-15-0	Carbon Disulfide	ND	1.1	ND	0.35	
156-60-5	trans-1,2-Dichloroethene	ND	0.54	ND	0.14	
75-34-3	1,1-Dichloroethane	ND	0.55	ND	0.14	
1634-04-4	Methyl tert-Butyl Ether	ND	0.54	ND	0.15	
108-05-4	Vinyl Acetate	ND	5.4	ND	1.5	
78-93-3	2-Butanone (MEK)	ND	1.1	ND	0.37	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. V9 = CCV recovery was below method acceptance limits.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Froehlich Environmental PLLC	
Client Sample ID:	Method Blank	ALS Project ID: P2004633
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P200820-MB
Test Code:	EPA TO-15 Modified	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA
Analyst:	Simon Cao	Date Analyzed: 8/20/20
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

.

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.53	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.1	ND	0.31	
110-54-3	n-Hexane	ND	0.54	ND	0.15	
67-66-3	Chloroform	ND	0.54	ND	0.11	
109-99-9	Tetrahydrofuran (THF)	ND	0.55	ND	0.19	
107-06-2	1,2-Dichloroethane	ND	0.54	ND	0.13	
71-55-6	1,1,1-Trichloroethane	ND	0.54	ND	0.099	
71-43-2	Benzene	ND	0.53	ND	0.17	
56-23-5	Carbon Tetrachloride	ND	0.53	ND	0.084	
110-82-7	Cyclohexane	ND	1.1	ND	0.32	
78-87-5	1,2-Dichloropropane	ND	0.54	ND	0.12	
75-27-4	Bromodichloromethane	ND	0.54	ND	0.081	
79-01-6	Trichloroethene	ND	0.54	ND	0.10	
123-91-1	1,4-Dioxane	ND	0.54	ND	0.15	
80-62-6	Methyl Methacrylate	ND	1.1	ND	0.27	
142-82-5	n-Heptane	ND	0.54	ND	0.13	
10061-01-5	cis-1,3-Dichloropropene	ND	0.52	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.53	ND	0.13	T2, T6
10061-02-6	trans-1,3-Dichloropropene	ND	0.53	ND	0.12	
79-00-5	1,1,2-Trichloroethane	ND	0.54	ND	0.099	
108-88-3	Toluene	ND	0.54	ND	0.14	
591-78-6	2-Hexanone	ND	0.54	ND	0.13	T2, T6
124-48-1	Dibromochloromethane	ND	0.54	ND	0.063	
106-93-4	1,2-Dibromoethane	ND	0.54	ND	0.070	
123-86-4	n-Butyl Acetate	ND	0.55	ND	0.12	T2, T6

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

T2 = Cited ADHS licensed method does not contain this analyte as part of method compound list.

T6 = The reported result cannot be used for compliance purposes.

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Froehlich Environmental PLLC	
Client Sample ID:	Method Blank	ALS Project ID: P2004633
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P200820-MB
Test Code:	EPA TO-15 Modified	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA
Analyst:	Simon Cao	Date Analyzed: 8/20/20
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.54	ND	0.12	
127-18-4	Tetrachloroethene	ND	0.52	ND	0.077	
108-90-7	Chlorobenzene	ND	0.54	ND	0.12	
100-41-4	Ethylbenzene	ND	0.54	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.1	ND	0.25	
75-25-2	Bromoform	ND	0.54	ND	0.052	L3
100-42-5	Styrene	ND	0.53	ND	0.12	
95-47-6	o-Xylene	ND	0.54	ND	0.12	
111-84-2	n-Nonane	ND	0.54	ND	0.10	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.54	ND	0.079	
98-82-8	Cumene	ND	0.54	ND	0.11	
80-56-8	alpha-Pinene	ND	0.54	ND	0.097	T2, T6
103-65-1	n-Propylbenzene	ND	0.54	ND	0.11	
622-96-8	4-Ethyltoluene	ND	0.54	ND	0.11	
108-67-8	1,3,5-Trimethylbenzene	ND	0.53	ND	0.11	
95-63-6	1,2,4-Trimethylbenzene	ND	0.54	ND	0.11	
100-44-7	Benzyl Chloride	ND	1.1	ND	0.21	
541-73-1	1,3-Dichlorobenzene	ND	0.54	ND	0.090	
106-46-7	1,4-Dichlorobenzene	ND	0.54	ND	0.090	
95-50-1	1,2-Dichlorobenzene	ND	0.54	ND	0.090	
5989-27-5	d-Limonene	ND	0.54	ND	0.097	T2, T6
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.53	ND	0.055	L3
120-82-1	1,2,4-Trichlorobenzene	ND	0.54	ND	0.073	L3
91-20-3	Naphthalene	ND	0.52	ND	0.099	
87-68-3	Hexachlorobutadiene	ND	0.53	ND	0.050	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

T2 = Cited ADHS licensed method does not contain this analyte as part of method compound list.

T6 = The reported result cannot be used for compliance purposes.

L3 = The associated blank spike recovery was above method acceptance limits.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:Froehlich Environmental PLLCClient Project ID:Canoa Hills Golfcourse Clubhouse Basement

ALS Project ID: P2004633

Test Code:	EPA TO-15 Modified	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date(s) Collected: 8/19/20
Analyst:	Simon Cao	Date(s) Received: 8/20/20
Sample Type:	1 L Zefon Bag(s)	Date(s) Analyzed: 8/20 - 8/21/20
Test Notes:		

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	ALS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P200820-MB	103	101	117	70-130	
Lab Control Sample	P200820-LCS	103	101	119	70-130	
Canoa Hills Clubhouse Basement	P2004633-001	104	120	137	70-130	S10

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery. S10 = Surrogate recovery was above laboratory and method acceptance limits. See case narrative.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client:	Froehlich Environmental PLLC			
Client Sample ID:	Lab Control Sample	ALS Project ID: P2004633		
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P200820-LCS		
Test Code:	EPA TO-15 Modified	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA		
Analyst:	Simon Cao	Date Analyzed: 8/20/20		
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 0.125 Liter(s)		
Test Notes:				

					Project	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		µg/m³	μg/m³		Limits	Qualifier
115-07-1	Propene	210	159	76	70-130	
75-71-8	Dichlorodifluoromethane (CFC 12)	210	207	99	70-130	
74-87-3	Chloromethane	212	183	86	70-130	
76 14 2	1,2-Dichloro-1,1,2,2-			110	70 120	
/0-14-2	tetrafluoroethane (CFC 114)	206	243	118	/0-130	
75-01-4	Vinyl Chloride	212	217	102	70-130	
106-99-0	1,3-Butadiene	212	234	110	70-130	
74-83-9	Bromomethane	212	205	97	70-130	
75-00-3	Chloroethane	214	175	82	70-130	
64-17-5	Ethanol	1,060	808	76	70-130	
75-05-8	Acetonitrile	214	171	80	70-130	
107-02-8	Acrolein	206	194	94	70-130	
67-64-1	Acetone	1,070	842	79	70-130	
75-69-4	Trichlorofluoromethane (CFC 11)	212	223	105	70-130	
67-63-0	2-Propanol (Isopropyl Alcohol)	422	358	85	70-130	
107-13-1	Acrylonitrile	212	176	83	70-130	
75-35-4	1,1-Dichloroethene	214	205	96	70-130	
75-09-2	Methylene Chloride	210	195	93	70-130	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	214	163	76	70-130	
76-13-1	Trichlorotrifluoroethane (CFC 113)	216	228	106	70-130	
75-15-0	Carbon Disulfide	212	193	91	70-130	
156-60-5	trans-1,2-Dichloroethene	214	209	98	70-130	
75-34-3	1,1-Dichloroethane	212	186	88	70-130	
1634-04-4	Methyl tert-Butyl Ether	214	213	100	70-130	
108-05-4	Vinyl Acetate	1,070	1100	103	50-150	
78-93-3	2-Butanone (MEK)	212	193	91	70-130	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client:	Froehlich Environmental PLLC					
Client Sample ID:	Lab Control Sample	ALS Project ID: P2004633				
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P200820-LCS				
Test Code:	EPA TO-15 Modified	Date Collected: NA				
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA				
Analyst:	Simon Cao	Date Analyzed: 8/20/20				
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 0.125 Liter(s)				
Test Notes:						

					Project	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	212	200	94	70-130	
141-78-6	Ethyl Acetate	432	383	89	70-130	
110-54-3	n-Hexane	216	172	80	70-130	
67-66-3	Chloroform	214	210	98	70-130	
109-99-9	Tetrahydrofuran (THF)	220	199	90	70-130	
107-06-2	1,2-Dichloroethane	214	232	108	70-130	
71-55-6	1,1,1-Trichloroethane	214	237	111	70-130	
71-43-2	Benzene	210	191	91	70-130	
56-23-5	Carbon Tetrachloride	208	239	115	70-130	
110-82-7	Cyclohexane	422	387	92	70-130	
78-87-5	1,2-Dichloropropane	214	182	85	70-130	
75-27-4	Bromodichloromethane	218	224	103	70-130	
79-01-6	Trichloroethene	216	228	106	70-130	
123-91-1	1,4-Dioxane	216	222	103	70-130	
80-62-6	Methyl Methacrylate	430	450	105	70-130	
142-82-5	n-Heptane	214	187	87	70-130	
10061-01-5	cis-1,3-Dichloropropene	214	228	107	70-130	
108-10-1	4-Methyl-2-pentanone	212	191	90	70-130	T2, T6
10061-02-6	trans-1,3-Dichloropropene	212	224	106	70-130	
79-00-5	1,1,2-Trichloroethane	214	216	101	70-130	
108-88-3	Toluene	212	213	100	70-130	
591-78-6	2-Hexanone	216	212	98	70-130	T2, T6
124-48-1	Dibromochloromethane	214	260	121	70-130	
106-93-4	1,2-Dibromoethane	214	246	115	70-130	
123-86-4	n-Butyl Acetate	218	215	99	70-130	T2, T6

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client:	Froehlich Environmental PLLC					
Client Sample ID:	Lab Control Sample	ALS Project ID: P2004633				
Client Project ID:	Canoa Hills Golfcourse Clubhouse Basement	ALS Sample ID: P200820-LCS				
Test Code:	EPA TO-15 Modified	Date Collected: NA				
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA				
Analyst:	Simon Cao	Date Analyzed: 8/20/20				
Sample Type:	1 L Zefon Bag	Volume(s) Analyzed: 0.125 Liter	r(s)			
Test Notes:						

					Project	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	216	192	89	70-130	
127-18-4	Tetrachloroethene	208	242	116	70-130	
108-90-7	Chlorobenzene	214	221	103	70-130	
100-41-4	Ethylbenzene	212	222	105	70-130	
179601-23-1	m,p-Xylenes	426	456	107	70-130	
75-25-2	Bromoform	214	293	137	70-130	L3
100-42-5	Styrene	212	242	114	70-130	
95-47-6	o-Xylene	214	225	105	70-130	
111-84-2	n-Nonane	214	185	86	70-130	
79-34-5	1,1,2,2-Tetrachloroethane	214	212	99	70-130	
98-82-8	Cumene	214	229	107	70-130	
80-56-8	alpha-Pinene	212	208	98	70-130	T2, T6
103-65-1	n-Propylbenzene	214	224	105	70-130	
622-96-8	4-Ethyltoluene	210	231	110	70-130	
108-67-8	1,3,5-Trimethylbenzene	212	229	108	70-130	
95-63-6	1,2,4-Trimethylbenzene	212	237	112	70-130	
100-44-7	Benzyl Chloride	214	274	128	70-130	
541-73-1	1,3-Dichlorobenzene	214	257	120	70-130	
106-46-7	1,4-Dichlorobenzene	214	251	117	70-130	
95-50-1	1,2-Dichlorobenzene	214	250	117	70-130	
5989-27-5	d-Limonene	212	186	88	70-130	T2, T6
96-12-8	1,2-Dibromo-3-chloropropane	214	287	134	70-130	L3
120-82-1	1,2,4-Trichlorobenzene	216	295	137	70-130	L3
91-20-3	Naphthalene	212	272	128	70-130	
87-68-3	Hexachlorobutadiene	214	277	129	70-130	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

L3 = The associated blank spike recovery was above method acceptance limits.

Appendix B ZEP Express Wax Product Literature

ZEP EXPRESS WAX

Now with UV Blockers and Rust-Oleum[®] Protection

DESCRIPTION

Premium, liquid hand wax that cleans while waxing. Contains a blend of carnauba wax, silicones and cleaners. Specifically designed for use on today's high-tech clear coat, acrylic and enamel finishes.

FEATURES	BENEFITS		
 Easy application 	 Can be applied and removed quickly by hand. 		
 Long lasting 	 Zep Express Wax will protect the finish and bead water for a 4-6 week period. 		
 Added protection 	 Formulated with UV blockers and Rust-Oleum[®] protection to protect vehicle surfaces. 		
 No drying necessary 	 Can be applied directly to wet surface. 		
 No abrasives 	 Will not scratch clear coat surfaces and produces no dusting on wipe-off. 		
Non-streaking	 Will not streak or haze on hard rubber and vinyl surface 		
APPLICATIONS			
Particularly useful for:			
Car Washes	New and Used Car Dealers	Passenger Car Rental & Leasing	

New and Used Car Dealers **Truck Rental & Leasing**

Passenger Car Rental & Leasing

Density - Specific Gravity7.9 lbs/gl -0.950

Shelf Life1 year minimum

Flash Point (TCC)100°F

D.O.T. Shipping Label.....None

COMPANION PRODUCTS

Zep Car and Truck Touch-Free Detergent, Zep Concentrated Rinse Wax, Zep Tireless Shine, Zep Underbody Rust Inhibitor, Zep Protect-All, Zep Re-Tire, Zep Blue Magic, Zep Foam Brush Shampoo, Zep Brite White Foam Shampoo, Zep Foaming Tunnel Cleaner

SPECIFICATIONS

Physical Form	.Moderately thick, liquid
Color	.White
Fragrance	.Vanilla
pH Concentrate	.9.0 to 9.5

PΑ	СК	AG	IN	G
		AO.	11 1	0

Quarts Gallons

ZEP MANUFACTURING COMPANY

Your One Source for Cleaning and Maintenance Products

PROD. #0825 300

ZEP EXPRESS WAX

Now with UV Blockers and Rust-Oleum[®] Protection

PROD. #0825 301B

ZEP MANUFACTURING COMPANY ATLANTA, GA 30301 A division of Acuity Specialty Products Group, Inc. CLEAN ACROSS AMERICA A di AND THROUGHOUT THE WORLD TM

CuityBrands.

BEFORE USING THIS PRODUCT. PLEASE READ THIS ENTIRE LABEL.

KEEP OUT OF REACH OF CHILDREN FOR INDUSTRIAL AND INSTITUTIONAL USE ONLY

NOT FOR HOUSEHOLD USE OR RESALE

PRECAUCION AL USUARIO: Si usted no lee inglés, no use este producto hasta que la etiqueta le haya sido explicada àmpliamente. (TO THE USER: If you cannot read English, do not use this product until the label has been fully explained to you.)					
÷				i	
in pfo re ui di	Is product is designed structure by train reconnel. Label direction lowed exactly Zen Man sponsible for ally injury ed in any manner n eREPACTIVITCAutions	exclusive ed, profe ufacOring los s, or ot in co s are not o	AND STREET A	ic ie is e	
	PERSONAL PROTECTION EQUIPMENT	В	Safety Glasses, Gloves		

ZEP EXPRESS WAX IMPROVED Now with Rust-Oleum® Protection and UV Blockers

Ready-To-Use Vehicle Hand Wax

Zep Express Wax is specifically designed for use on today's high-tech clear coat, acrylic and enamel finishes. It's an easy-to-use product that removes residual deposits of tar, grease, oil, and road grime while waxing the surface of the vehicle. Zep Express Wax can be applied to a wet surface and leaves an easy to remove haze. It will not streak glass or haze on hard rubber and vinyl surfaces. It's a great product to use when convenience and time are the top requirements or when a quick, durable shine is needed.

· Zep Express Wax will protect the finish and bead

water for a 4 to 6 week period. · Can be applied and removed quickly by hand.

· Delivers high shine.

. Great to use when a quick, clean shine is required.

· Contains a blend of silicones, carnauba wax and

cleaners

DIRECTIONS:

Shake well before using. For best results, pre-clean the surface to remove any oxidation before applications. Zep Express Wax can be applied by hand with a soft, damp cloth. Let dry to a haze and then buff to a high gloss with a clean, dry cloth.

WARNING! COMBUSTIBLE

Can cause severe eye irritation or inflammation. Inhalation of vapors may cause respiratory tract irritation and/or mid central nervous system depression characterized by headache, dizziness, nausea, or stupor. DO NOT swallow this product. Avoid breathing vapors. Exposure may aggravate existing skin or respiratory disorders. Further information on the effects of overexposure is included on the Material Softw. Data Shoet, which is available. included on the Material Safety Data Sheet, which is available upon request.

Zep advocates limiting exposure to all chemical products. Wearing of tight-fitting safety glasses is strongly recommended, especially for contact lens wearers. Wear natural rubber, nitrile, neoprene, or

other resistant gloves. Use product in well-ventilated areas only; open windows/doors and use exhaust fans in enclosed spaces. Remove contaminated clothing promptly and DO NOT rewear until thoroughly cleaned. After handling, wash hands thoroughly with soap and water.

FIRST AID:

EYES: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical attention immediately. SKIN: Wash contaminated skin immediately and thoroughly with soap or mild detergent apply a skin cream. Consult a physician if irritation develops.

INHALATION: Move exposed person to fresh air. If irritation persists, get medical attention immediately.

INGESTION: If product is swallowed, DO NOT induce vomiting. If vomiting occurs, keep head below hips to prevent aspiration (breathing) of liquid into the lungs. Get emergency medical attention immediately.

DISPOSAL AND/OR SPILL INFORMATION: As with all cleaning DISPOSAL AND/OR SPILL INFORMATION: As with all cleaning and maintenance procedures, run-off from the cleaning or maintenance process should be diverted to a collection vessel and not allowed to soak into the ground or to enter a storm sewer. If this product is spilled or contaminated and cannot be used, creating the need for disposal, absorb product on an inert absorbent material, such as Zep-O-Zorb or Zep Super Sorbent and deposit in a sealable container. Thoroughly clean area with detergent solution and rinse well with water and rinse well with water.

COMBUSTIBLE: Keep away from heat, spark, open flame or any source of ignition.

STORAGE: Store in a cool area away from direct sunlight and protect from freezing. Keep container tightly closed at all times when not in use to decrease evaporation of volatile solvents.

ZEP MANUFACTURING COMPANY

1-877-I BUY ZEP (1-877-428-9937)

Your One Source for Cleaning and Maintenance Products